uniform vec2 u_mouse;
uniform vec2 u_res;
uniform sampler2D u_image;
uniform sampler2D u_imagehover;
uniform float u_time;
uniform float u_circlesize;
varying vec2 v_uv;
float circle(in float _size, in vec2 _st, in float _radius, in float blurriness){
vec2 dist = _st;
return 1. - smoothstep(_radius-(_radius*blurriness), _radius+(_radius*blurriness), dot(dist,dist)*_size);
}
vec3 mod289(vec3 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 mod289(vec4 x) {
return x - floor(x * (1.0 / 289.0)) * 289.0;
}
vec4 permute(vec4 x) {
return mod289(((x * 34.0) + 1.0) * x);
}
vec4 taylorInvSqrt(vec4 r) {
return 1.79284291400159 - 0.85373472095314 * r;
}
float snoise3(vec3 v) {
const vec2 C = vec2(1.0 / 6.0, 1.0 / 3.0);
const vec4 D = vec4(0.0, 0.5, 1.0, 2.0);
// First corner
vec3 i = floor(v + dot(v, C.yyy));
vec3 x0 = v - i + dot(i, C.xxx);
// Other corners
vec3 g = step(x0.yzx, x0.xyz);
vec3 l = 1.0 - g;
vec3 i1 = min(g.xyz, l.zxy);
vec3 i2 = max(g.xyz, l.zxy);
// x0 = x0 - 0.0 + 0.0 * C.xxx;
// x1 = x0 - i1 + 1.0 * C.xxx;
// x2 = x0 - i2 + 2.0 * C.xxx;
// x3 = x0 - 1.0 + 3.0 * C.xxx;
vec3 x1 = x0 - i1 + C.xxx;
vec3 x2 = x0 - i2 + C.yyy; // 2.0*C.x = 1/3 = C.y
vec3 x3 = x0 - D.yyy; // -1.0+3.0*C.x = -0.5 = -D.y
// Permutations
i = mod289(i);
vec4 p = permute(permute(permute(
i.z + vec4(0.0, i1.z, i2.z, 1.0)) +
i.y + vec4(0.0, i1.y, i2.y, 1.0)) +
i.x + vec4(0.0, i1.x, i2.x, 1.0));
// Gradients: 7x7 points over a square, mapped onto an octahedron.
// The ring size 17*17 = 289 is close to a multiple of 49 (49*6 = 294)
float n_ = 0.142857142857; // 1.0/7.0
vec3 ns = n_ * D.wyz - D.xzx;
vec4 j = p - 49.0 * floor(p * ns.z * ns.z); // mod(p,7*7)
vec4 x_ = floor(j * ns.z);
vec4 y_ = floor(j - 7.0 * x_); // mod(j,N)
vec4 x = x_ * ns.x + ns.yyyy;
vec4 y = y_ * ns.x + ns.yyyy;
vec4 h = 1.0 - abs(x) - abs(y);
vec4 b0 = vec4(x.xy, y.xy);
vec4 b1 = vec4(x.zw, y.zw);
//vec4 s0 = vec4(lessThan(b0,0.0))*2.0 - 1.0;
//vec4 s1 = vec4(lessThan(b1,0.0))*2.0 - 1.0;
vec4 s0 = floor(b0) * 2.0 + 1.0;
vec4 s1 = floor(b1) * 2.0 + 1.0;
vec4 sh = -step(h, vec4(0.0));
vec4 a0 = b0.xzyw + s0.xzyw * sh.xxyy;
vec4 a1 = b1.xzyw + s1.xzyw * sh.zzww;
vec3 p0 = vec3(a0.xy, h.x);
vec3 p1 = vec3(a0.zw, h.y);
vec3 p2 = vec3(a1.xy, h.z);
vec3 p3 = vec3(a1.zw, h.w);
//Normalise gradients
vec4 norm = taylorInvSqrt(vec4(dot(p0, p0), dot(p1, p1), dot(p2, p2), dot(p3, p3)));
p0 *= norm.x;
p1 *= norm.y;
p2 *= norm.z;
p3 *= norm.w;
// Mix final noise value
vec4 m = max(0.6 - vec4(dot(x0, x0), dot(x1, x1), dot(x2, x2), dot(x3, x3)), 0.0);
m = m * m;
return 42.0 * dot(m * m, vec4(dot(p0, x0), dot(p1, x1),
dot(p2, x2), dot(p3, x3)));
}
void main() {
// We manage the device ratio by passing PR constant
vec2 res = u_res * PR;
vec2 st = gl_FragCoord.xy / res.xy - vec2(0.5);
// tip: use the following formula to keep the good ratio of your coordinates
st.y *= u_res.y / u_res.x;
// We readjust the mouse coordinates
vec2 mouse = u_mouse * -0.5;
vec2 circlePos = st + mouse;
float offx = v_uv.x + sin(v_uv.y + u_time * .1);
float offy = v_uv.y - u_time * 0.1 - cos(u_time * .001) * .01;
float circleSize = u_circlesize;
float c = circle(circleSize, circlePos, .1, 8.) * 3.;
float noise_amount = 0.; // 8
float n = snoise3(vec3(offx, offy, u_time * .00001) * noise_amount) - 1.;
float finalMask = smoothstep(0.5, 0.5, n + pow(c, 2.));
vec4 image = texture2D(u_image, v_uv);
vec4 hover = texture2D(u_imagehover, v_uv);
vec4 finalImage = mix(image, hover, finalMask);
gl_FragColor = finalImage;
}